ПРОГРАММА ДЛЯ ЭВМ «МОНИТОР РЕАЛЬНОГО ВРЕМЕНИ СИСТЕМЫ СБОРА И ПЕРВИЧНОЙ ОБРАБОТКИ ТЕЛЕИНФОРМАЦИИ (МОНИТОР РВ)»

Описание программы для ЭВМ

Листов: 14

Наименование ИС:

ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации Стр. 2 (Монитор РВ)»

СОДЕРЖАНИЕ

1.	. ВВЕДЕНИЕ	3
	1.1. Общие сведения и область применения	3
	1.2. Термины, сокращения и определения	3
2.	НАЗНАЧЕНИЕ МОНИТОР РВ И ЦЕЛИ СОЗДАНИЯ МОНИТОР РВ	
	2.1. Назначение и цели создания Монитор РВ	
	2.2. Краткие сведения об объекте автоматизации	
	2.3. Перечень функций, реализуемых ПЭВМ	
	2.3.1. Прием/передача телемеханической информации	
	2.3.2. Обработка телемеханической информации	
	2.3.3. Ретрансляция	
	2.3.4. Диагностика	
	2.3.5. Отображение информации	
	2.3.6. Архивирование	
	2.3.7. Резервирование	
	2.3.8. Синхронизация времени	
	2.3.9. Конфигурирование	
	2.3.10. Защита информации	9
	2.3.11. Управление доступом на уровне ОС	
_		
3.		
	3.1. Структура ПЭВМ	.11
	3.2. Состав программного обеспечения ПЭВМ	
	3.3. Требования к аппаратному обеспечению	
		. 13
4.	. СООТВЕТСТВИЕ ПЭВМ ТРЕБОВАНИЯМ РЕЕСТРА РОССИЙСКОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	.14
	I I FUI FAIVIIVI TUI U UDEUI IEMENIA	. 14

1	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации	
паименование ис.	(Монитор РВ)»	Стр. 3

1. ВВЕДЕНИЕ

1.1. Общие сведения и область применения

В документе дается общее описание Программы для ЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)».

Программа для ЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)», далее по тексту – Монитор РВ состоит из набора компонентов: исполняемого файла, библиотек и конфигурационных файлов, базы данных, объединенных для получения определенного результата.

Монитор РВ применяется для управления работой контроллера телемеханики (контроллера ТМ), входящего в состав устройства телемеханики МТК-30.КП производства ООО «СИСТЕЛ».

1.2. Термины, сокращения и определения

Список терминов и сокращений, используемых в данном документе, приведен в таблице 1.

Таблица 1 – Термины и обозначения

Термин (сокращение)	Определение
APM	Автоматизированное рабочее место
ПО	Программное обеспечение
ИС	Информационная система
Монитор РВ	Программа «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)»
ПЭВМ	Программа для электронных вычислительных машин
БД РВ	База данных, обработка данных в которой происходит в реальном времени (представляет собой таблицы оперативных данных в памяти программы, которые отражают реальное состояние объекта)
ПТК	Программно-технический комплекс
ТИ	Телеизмерения
TC	Телесигналы
ТУ	Телеуправление
TP	Телерегулирование
ΚП	Контролируемый пункт
ПУ	Пункт управления
Контроллер TM	Контроллер телемеханики (основной компонент устройства телемеханики и ЦППС)
КА	Коммутационный аппарат
цппс	Центральная приемо-передающая станция (выполняет функции устройства телемеханики ПУ)

	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)»	
--	--	--

Термин (сокращение)	Определение		
Сигнатура	Структурированное описание типа и адреса элемента данных		
Канал ТМ	Канал телемеханики используется для передачи данных между КП и ПУ (реализуется на основе аппаратуры связи различных типов)		

2. НАЗНАЧЕНИЕ МОНИТОР РВ И ЦЕЛИ СОЗДАНИЯ МОНИТОР РВ

2.1. Назначение и цели создания Монитор РВ

Целью создания Монитор РВ является получение коммерческого программного продукта, предназначенного для автоматизации управления работой контроллера ТМ, входящего в состав устройства телемеханики МТК-30.КП производства ООО «СИСТЕЛ».

Монитор РВ обеспечивает работу с контроллерами ТМ с использованием широкого спектра протоколов обмена данными:

- протоколы, реализованные в соответствии с международными стандартами:
 - «МЭК 60870-5-101»;
 - «MЭК 69870-5-103»;
 - «МЭК 60870-5-104»;
 - открытый протокол «SystelNet», разработанный ООО «СИСТЕЛ;
 - протокол «CANEX»;
 - протокол «MODBUS»;
 - фирменных протоколов приборов учета основных производителей;
 - протоколы унаследованных систем телемеханики.

Программа «Монитор PB» поддерживает подключение и работу со всеми устройствами телемеханики, счетчиками и измерительными преобразователями, выпускаемыми ООО «СИСТЕЛ», а также счетчиками электроэнергии и измерительными преобразователями, релейными терминалами и устройствами телемеханики сторонних производителей, поддерживающими указанные выше протоколы.

ПЭВМ предназначена для повышения эффективности процессов управления технологическими процессами энергетических предприятий.

2.2. Краткие сведения об объекте автоматизации

Объектами автоматизации являются процессы коммутации непосредственно с устройствами телемеханики, обеспечивающие прием и передачу данных по цифровым каналам, а также процессы накопления и обработки архивов оперативных данных и событий.

Пользователями ПЭВМ являются сотрудники энергетических и других предприятий производственной сферы, на которых была приобретена и внедрена ПЭВМ, задействованные в работе управления технологическими процессами.

2.3. Перечень функций, реализуемых ПЭВМ

Монитор РВ реализует следующие основные функции:

– прием и передачу данных (телемеханической информации, команд телеуправления и телерегулирования, учетных данных от счетчиков электрической энергии, релейной информации) по различным протоколам, включая «МЭК 60870-5-101/103/104», «SystelNet», «CANEX», «MODBUS», и широкому спектру телемеханических протоколов;

Наименование ИС: ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации Стр. (Монитор РВ)»
--

- первичную обработку данных, включающую допусковый контроль (контроль значений параметров в допустимых диапазонах), дорасчет параметров по заданным алгоритмам, замену недостоверных параметров дублерами, блокировку выполнения команд телеуправления в соответствии с заданными условиями;
- локального хранения собранной информации с настраиваемой глубиной хранения, передачи информации из локального архива по запросу и обеспечения альтернативного доступа к архиву как к файлу посредством стандартных функций доступа в файловой системе;
- работу с резервированными каналами различной пропускной способности и информационной емкостью;
- буферизацию телесигналов (TC) и телеизмерений (TИ) с настраиваемой глубиной при пропадании канала связи);
 - работу в режиме «горячего» резервирования аппаратных средств устройств;
 - обеспечение интерфейса доступа к данным реального времени;
- обеспечение локального и удаленного интерфейсов на основе встроенного Web-сервера, предназначенного для настройки и контроля работы программы Монитор PB;
- обеспечение работы МТК-30.КП в одноранговых и иерархических распределенных системах сбора данных;
- согласование (коррекцию) времени МТК-30.КП и подключенных к нему устройств телемеханики следующими способами:

по временным импульсам от спутниковой системы ГЛОНАСС;

посредством подключения к серверу точного времени с использованием NTP протокола;

– по команде извне по протоколам МЭК 60870-5-101, МЭК 60870-5-104.

2.3.1. Прием/передача телемеханической информации

Монитор РВ обеспечивает прием и обработку дискретных сигналов и измерений с привязкой к общесистемному времени (всемирному координированному времени UTC), а также выдачу команд телеуправления, принимаемых с верхнего уровня ССПИ.

Основные характеристики принимаемой и передаваемой Монитор РВ информации:

- телесигнализация дискретные сигналы состояния оборудования объектов (могут иметь или не иметь метку времени);
- телеизмерения аналоговые сигналы, характеризующие непрерывные процессы, происходящие на объекте (могут иметь или не иметь метку времени);
- телеизмерения интегральные аналоговые сигналы с выходов счетчиков и расходометров (могут иметь или не иметь метку времени);
- служебная информация дискретная и аналоговая информация, характеризующая состояние оборудования сбора и передачи данных и каналов связи (может иметь или не иметь метку времени);
- телеуправление дискретные команды изменения положения коммутационного оборудования объектов (имеет квитанцию об исполнении), принимаются в виде запросов клиентских приложений;
- телерегулирование это дискретные команды пошагового изменения положения регулируемого оборудования объекта (имеет квитанцию об исполнении), принимаются в виде запросов клиентских приложений;

(Монитор РВ)»

- синхронизация команды передачи меток времени на оборудование объектов для привязки внутренних часов всех устройств системы к единому астрономическому времени;
- опросы передача значений сигналов по запросу в ответ на определенные команды.

2.3.2. Обработка телемеханической информации

Монитор РВ выполняет допусковый контроль измеряемых параметров с формированием тревог при выходе за установленные пределы с учетом апертур, аварийных и технологических пределов, расчет значений по фиксированным и программируемым алгоритмам, замену недостоверных параметров дублерами, «расчет» программных блокировок, масштабирование измерений.

В зависимости от параметров настройки, предварительно сохраненных в соответствующих таблицах конфигурационной БД Монитор РВ, обработка телесигналов и телеизмерений может производиться как циклично, так и по факту изменения состояния.

2.3.3. Ретрансляция

Монитор РВ обеспечивает маршрутизацию принятых данных и передачу потоков данных одновременно по нескольким направлениям в соответствии со структурой сети передачи данных. Контроллеры ТМ обеспечивают поддержку не менее 10 направлений передачи данных с индивидуальным набором данных для передачи по каждому направлению.

Монитор РВ обеспечивает буферирование информации при разрыве канала передачи данных с настраиваемой глубиной. Размер буфера выбирается в зависимости от типа контроллера ТМ исходя из необходимости буферирования от одной тысячи до десяти тысяч параметров. Буферирование производится отдельно по типам данных: сигналы и измерения, раздельно для каждого направления передачи данных.

Монитор РВ также обеспечивает настройку приоритетов передачи информации в зависимости от класса напряжения.

2.3.4. Диагностика

Монитор РВ выполняет сбор статистических данных о работе контроллера ТМ, а также обеспечивает мониторинг и диагностику работы модулей и каналов передачи данных.

При отказе модуля из-за сбоя или потери питания, контроллером ТМ формируется соответствующий сигнал тревоги. При включении отказавшего модуля в работу этот сигнал снимается.

Монитор РВ также обеспечивает контроль работы источников бесперебойного питания, состояния блоков питания (пропадание напряжений) и контроль температурного режим МТК=30.КП.

2.3.5. Отображение информации

Отображение информации базируется на WEB-сервере, встроенном в программу «Монитор PB», и клиентской части – программы «АРМ Телемеханика»,

1	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)»	
---	--	--

реализуемой на базе одного из интернетобозревателей. WEB-сервер обеспечивает доступ к данным в БД РВ в режиме реального времени.

2.3.6. Архивирование

Одной из функций Монитор РВ является архивирование данных, сведений о работе устройства телемеханики, сопряженных с ним приборов учета и устройств РЗА.

Монитор PB осуществляет сбор данных и записывает их в БД PB, располагаемую в оперативной памяти контроллера ТМ, снабжая их атрибутами, такими как статус, время изменения состоянии, время обновления в БД PB и т.п.

Монитор РВ обеспечивает перенос данных из БД РВ в архивную БД сервера ТМ согласно спискам архивируемых измерений и сигналов с заданной периодичностью и настраиваемой глубиной хранения. Данные записываются на внутренний носитель информации – карту памяти, установленную в контроллере ТМ.

Архивирование данных обеспечивает:

- •ведение оперативной ведомости архива, в который записываются значения параметров, перечисленных в списке для включения в ведомость, при изменении состояния (значения) параметра;
- •ведение системного журнала, предназначенного для хранения информации о работе Монитор РВ, модулей ввода-вывода, внешних устройств, контроллеров ТМ и каналов связи.

2.3.7. Резервирование

Монитор РВ предусматривает резервирование работы основных компонентов и применяется для повышения надежности работы. Обеспечивается работа со следующими элементами резервирования:

основной и резервный контроллеры ТМ.

При этом обеспечивается:

- •актуализация БД РВ основного и резервного контроллеров ТМ (путем репликации данных БД РВ основного и резервного контроллера ТМ);
- •прием/передача телеинформации по основным и резервным каналам (основной и резервный каналы могут иметь различные скорости и протоколы передачи информации).

2.3.8. Синхронизация времени

Монитор выполняет корректировку времени контроллера ТМ и сопрягаемых с ним модулей и внешних устройств.

Синхронизация времени контроллера ТМ осуществляется с помощью программного сервиса NTP (Network Time Protocol) и обеспечивает привязку показаний часов контроллера ТМ к универсальному координированному времени (UTC). Подстройка общесистемного времени контроллера ТМ может осуществляться следующими способами:

- •от источника точного времени (ГЛОНАСС/GPS приемник);
- •от NTP сервера точного времени, включенного в состав в технологической ЛВС ССПИ ПС;

1	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)»	
---	--	--

•от сервера точного времени ССПИ верхнего уровня по протоколам ГОСТ Р МЭК 60870-5-101/104.

Точность синхронизации времени зависит от используемого способа настройки сервиса NTP и составляет 1 мс (при использовании протоколов ГОСТ Р МЭК 60870-5-101/104 для синхронизации времени — 10 мс).

Программа-сервис NTP в контроллере TM запускается при загрузке операционной системы.

2.3.9. Конфигурирование

Конфигурация Монитор РВ связана с изменением значений полей в конфигурационных таблицах базы данных конфигурации (БД КФ) и в специальных файлах конфигурации. Средствами подсистемы конфигурирования производится контроль целостности и непротиворечивости конфигурационных параметров, выполняемый при инициализации Монитор РВ, и сопровождается формированием и записью соответствующих сообщений в рабочем журнале.

2.3.10. Защита информации

Для защиты от несанкционированного доступа к ресурсам Монитор РВ реализована многоуровневая система защиты информации.

2.3.11. Управление доступом на уровне ОС

Операционная система, установленная в контроллере ТМ, обеспечивает авторизованный доступ к настройкам с разделением доступа к информации и программному обеспечению.

В режиме по умолчанию только специализированный пользователь "root", являющийся администратором системы, имеет доступ к управлению:

- учетными записями пользователей (описание, активация, блокирование и уничтожение);
- информационными потоками между устройствами, сегментами автоматизированной системы управления и автоматизированными системами управления (сетевые настройки, экранирование, фильтрация, маршрутизация, контроль соединений, однонаправленная передача и иные способы управления);
- настройкам сервера синхронизации времени.

В рабочем режиме системные конфигурационные файлы контроллера ТМ закрыты на запись и перезапись. Для изменения системных настроек необходимо выполнить команду перехода в конфигурационный режим и открыть доступ на запись системных конфигурационных файлов.

Средствами ОС обеспечивается ограничение неуспешных попыток входа в ОС (доступа к системе) и защищенный удаленного доступ к информации и программному обеспечению через внешние информационно-телекоммуникационные сети на основе сетевого протокола SSH с шифрованием трафика.

2.3.12. Управление доступом к представлению данных

Доступ к функциям Монитор РВ авторизован посредством идентификатора и пароля пользователя и предусматривает разделение прав (просмотр, выполнение

Наименование ИС:	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)»	
------------------	--	--

команд ТУ, контроль каналов связи, доступ к БД КФ и журналу регистрации событий, установка ручных значений и т.д.).

В процессе работы создаются архивы для регистрации событий, возникающих при работе КП. Файлы архивов располагаются в отдельной директории и структурированы по суткам.

В архивы записываются события:

- •попытки входа;
- •попытки выполнения команд телеуправления (телерегулирования);
- •попытки контроля каналов связи;
- •попытки доступа к конфигурационной базе данных и журналу регистрации событий:
 - •попытки установки ручных значений;
 - •и т.д.

Все события записываются с метками времени с точностью до 1 мс. Список сохраняемых событий определяется (настраивается) при конфигурировании контроллера ТМ и может изменяться в процессе эксплуатации Устройства. Архивы организованы по принципу кольцевого буфера. Предельная глубина хранения сообщений определяется размером памяти используемой карты памяти контроллера ТМ.

1	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации	
	(Монитор РВ)»	Стр. 11

3. ОПИСАНИЕ ПЭВМ

3.1. Структура ПЭВМ

Монитор РВ представляет собой программу для ЭВМ, состоящую из набора компонентов: исполняемого файла, библиотеки стандартных шаблонов (STL) и конфигурационных файлов, базы данных, объединенных для получения определенного результата.

При создании Монитор РВ применены актуальные программные технологии: многопоточность, STL. Программа разработана на языке высокого уровня C++ в среде разработки Linux.

В процессе загрузки Монитор РВ использует в качестве входной информации данные, предварительно сохраненные в конфигурационном файле и в конфигурационной БД.

Основными входными данными, которыми оперирует Монитор PB, являются телемеханическая, учетная, релейная и технологическая информация, поступающая по линиям передачи данных. Полученные данные хранятся в БД PB.

Выходными данными являются ретранслируемые по запросам потребителей данные из БД РВ.

Функциональная схема Монитор РВ представлена на рисунке 1.

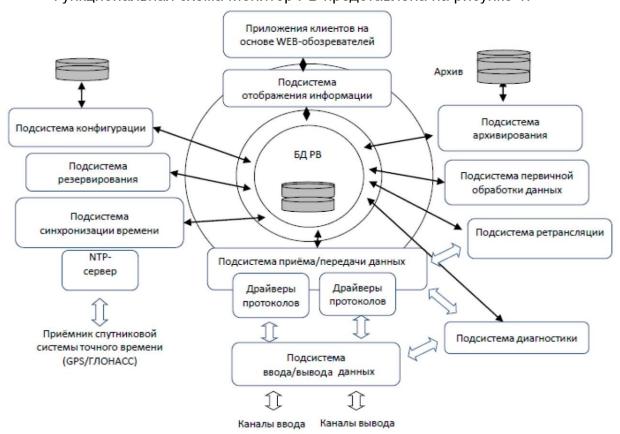


Рисунок 1 - Функциональная схема Монитор РВ

ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации	
(Монитор РВ)»	

3.2. Состав программного обеспечения ПЭВМ

Для обеспечения функционирования Монитор РВ используется программное обеспечение, представленное в реестре отечественного ПО в качестве разрешенного. Применятся версии программного обеспечения, обеспеченные поддержкой разработчика/производителя на момент ввода в эксплуатацию Монитор РВ.

Состав используемого программного обеспечения системы приведен в таблице 2.

Таблица 2 – Состав программного обеспечения ПЭВМ

№ п/п	Параметр	Значение
1.	Операционная система	Linux (Debian)
2.	Драйверы	Стандартные (интегрированные в Linux) Собственной разработки – для канального адаптера и модуля CAN
3.	Библиотеки	Библиотека стандартных шаблонов – STL Стандартные библиотеки ОС Linux – libc.a (libc.so) и библиотека поддержки многопоточности – libpthread.a

3.3. Требования к аппаратному обеспечению

Состав технических средств, используемый для установки Монитор РВ, обеспечивает возможность построения отказоустойчивой архитектуры. В зависимости от требований к резервированию возможно использование от одного до двух контроллеров ТМ, с параметрами, указанными в таблице 3.

Таблица 3 – Требования к аппаратному обеспечению

Nº		
п/п	Параметр	Значение
1.	Процессор	Тактовая частота – не менее 1400 МГгц, тип процессора – ARM, X86
2.	Оперативная память	1 Гб и более
3.	Объем жесткого диска	1 – 4 Γ6
4	Количество портов Ethernet	1 и более

Для обеспечения бесперебойного питания контроллера ТМ рекомендуется использовать монтируемое в КП устройство бесперебойного питания.

В процессе штатного режима работы информационной системы необходимо проводить мониторинг ресурсов контроллера ТМ. Превышение коэффициента использования процессоров более 70 % в промежутке времени более 1 (одной) минуты и превышение потребления оперативной памяти более 80% требует анализа

Наименование ИС:	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации	
	(Монитор РВ)»	

и в случае выявления систематического характера может являться основанием для увеличения требуемых ресурсов контроллера ТМ.

Объем БД контроллера ТМ определяется в зависимости от ежесуточного увеличения объема сохраняемых данных и нуждается в обязательном регулярном мониторинге (путем подключения FLASH объемом памяти 32 Гб по порту USB).

3.4. Состав и структура дистрибутива

Файлы, входящие в состав Монитор РВ, необходимо разместить на жёстком диске компьютера в любой удобной рабочей папке.

Рабочая папка должна содержать следующие обязательные каталоги:

- •«zemon», предназначенный для размещения исполняемого файла и файлов настройки работы Монитор PB;
- •«dbase», предназначенный для размещения конфигурационных файлов настройки Монитор РВ;
- •«web», предназначенный для размещения web-ресурсов, используемых подсистемой APM Телемеханика.

Как в рабочей папке, так и в каждом из перечисленных каталогов могут быть созданы дополнительные каталоги, предназначенные для хранения файлов описания устройств, работу которых поддерживает Монитор РВ.

Каталог «zemon» должен содержать следующие файлы:

- •«zemon» исполняемый файл Монитор РВ;
- •«MwARM.cfg», «MwStep.cfg», «MwType.cfg» файлы параметризации Монитор РВ.

Каталог «dbase» должен содержать следующие файлы:

- •«LOGIN.DBF», «DEVICE.DBF», «SYSCHAN.DBF», «CHANNEL.DBF», «SYSDATA.DBF» обязательные конфигурационные файлы Монитор РВ;
- •«RETRANS.DBF», «TIME_KP.DBF», «CALIBR.DBF», «CALC.DBF», «TIMESYNC.DBF» дополнительные конфигурационные файлы Монитор РВ.

	ПЭВМ «Монитор реального времени системы сбора и первичной обработки телеинформации (Монитор РВ)»	
--	--	--

4. COOTBETCTBUE ПЭВМ ТРЕБОВАНИЯМ РЕЕСТРА РОССИЙСКОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Программное обеспечение Монитор РВ правомерно введено в гражданский оборот на территории Российской Федерации, экземпляры программного обеспечения либо права использования программного обеспечения, услуги по предоставлению доступа к программному обеспечению свободно реализуются на всей территории Российской Федерации, отсутствуют ограничения, установленные в том числе иностранными государствами и препятствующие распространению или иному использованию программы для электронных вычислительных машин и базы данных на территории Российской Федерации или территориях отдельных субъектов Российской Федерации.

Сведения о программном обеспечении Монитор РВ не составляют государственную тайну и программное обеспечение не содержит сведений, составляющих государственную тайну.

Программное обеспечение Монитор РВ не имеет принудительного обновления и управления из-за рубежа.

Гарантийное обслуживание, техническая поддержка и модернизация программного обеспечения Монитор РВ осуществляются российской коммерческой организацией без преобладающего иностранного участия.

Исключительное право на программное обеспечение на территории всего мира и на весь срок действия исключительного права согласно свидетельству о государственной регистрации программы для ЭВМ № 2009614844 принадлежит ООО «СИСТЕМЫ ТЕЛЕМЕХАНИКИ», ООО «СИСТЕМЫ ТЕЛЕМЕХАНИКИ И АВТОМАТИЗАЦИИ».